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Abstract 

The results of the measurement of the Ni Ka: 
spectral-line peak with a double-crystal spectrometer 
with thick perfect silicon crystals in the dispersive 
arrangement (440 sym., + 4403 sym.) were published 
some time ago. A sharp anomaly was found in the 
measured rocking curve when the s(cond crystal was 
adjusted for coplanar three-beam Bragg 4403 diffrac- 
tion. In this paper, the experimental curves are com- 
pared with the precise calculation based on the 
dynamical theory of X-ray diffraction. 

I. Introduction 

Coplanar three-beam Si[000, 440, 404] X-ray Bragg 
diffraction was first mentioned by Deslattes (1968) 
and was later examined by Graeff & Bonse (1977) 
from an interferometric point of view. The precise 
measurement of this diffraction by double-crystal 
diffractometry was performed by Pacherovfi & 
Bubfikovfi (1987). 
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It was shown by Graeff & Bonse (1977) that 
coplanar three-beam [000, 440, 404] diffraction 
apparently changes the properties of the 440 reflec- 
tion around the value of A,~ - Ni Ka2 (for which the 
condition for three-beam coplanar [000, 440, 404] 
diffraction can be exactly fulfilled) in comparison 
with the usual two-beam [000, 440] diffraction. In 
such a case, the method of having the double-crystal 
diffractometer arranged as a spectrometer, in which 
the sample crystal is adjusted to the three-beam 
diffraction, can be properly used in the experimental 
part of the treatment of this type of many-beam 
diffraction. 

Pacherovfi & Bubfikovfi (1987) showed the results 
of such measurement. In a narrow wavelength inter- 
val, a very sharp anomaly was found. A simple 
calculation describing the experiment was suggested 
and the necessary calculation performed to explain 
qualitatively the anomalous change. In the experi- 
ment, the sample surface was parallel to the (110) 
lattice planes. Thus, the 440 reflection was symmetri- 
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cal and the 404 reflection was the extremely asym- 
metrical one, parallel to the surface. 

In the calculation (Pacherovfi & Bubfikovfi, 1987), 
the basis for the explanation of the anomalous 
change observed in the rocking curve was the size of 
the spectral window of the spectrometer created by 
the Du Mond method. It was also assumed that the 
whole reflected energy can be found only in the 440 
reflection. This assumption is based on the experi- 
mental finding that no reflected energy was detected 
in the extremely asymmetrical 404 reflection. 

Another simplification in the work of Pacherovfi & 
Bubfikovfi (1987) lay in the expression of the funda- 
mental system of equations of the dynamical theory 
itself: the linearization of coefficients was used in the 
calculation. 

In spite of the simplifications described above, 
qualitative agreement of the experimental and calcu- 
lated curves was found. The authors believed that a 
quantitative discrepancy results mainly from a non- 
ideal adjustment of the sample crystal to the co- 
planar [000, 440, 404] position because the anoma- 
lous behaviour of the rocking curve was very 
sensitive to the adjustment. Another reason for the 
discrepancy is the simplifications in the simulation of 
the experiment. 

In this paper, we present the precise calculation of 
the coplanar three-beam diffraction [000, 440, 404] 
and its comparison with experiment. 

2. Calculation of the reflection coefficient 

The meanings of all symbols used in the following 
are given in detail by Penning & Polder (1968) and 
by Pacherov~ & Bubfikovfi (1987). See also Fig. 1, 
where in a reminder is given of the definitions of the 
basic vectors used in the fundamental system of 
equations of X-ray diffraction. 

z 

4 0 4 ~  ~ ~ 4 4 0  

Fig. 1. Ewald's geometrical construction for coplanar three-beam 
[000, 440, 404] diffraction. The definition of the basic vectors u,, 
u2, u3 and v, the quantity k,, and the system of coordinates used 
in the calculation are shown. 

The fundamental system of equations of n-beam 
diffraction [Penning & Polder, 1968, equation (3.8)] 
for the amplitudes Zj of the waves inside the diffrac- 
ting crystal can be arranged as follows for coplanar 
three-beam diffraction (Pacherov~ & Bubfikovfi, 
1987): 

3 
Z B i j Z j = O ,  i =  1, 2, 3, 

j=l 

which leads, for [000, 440, 404] diffraction, to the 
dispersion equation 

n l l B 2 2 B 3 3  - B2(B~ + B22 + B33) + 2B 3 = 0, (1) 

in which (B~i~j)=)B=C~.,~qt44o [C,,= 1, C,~= 
(ui'uj)] for all i, j =  1, 2, 3 (the meaning of the 
c o e f f i c i e n t s  Bii will be treated in the following) and to 
the amplitude ratios r2 = Z2/Z, and r3 -- Z 3 / Z l :  

r2 = B ( B -  B33)/ (B22B33 - B2), 

r 3 = B ( B -  Bz2)/(B22B33- B2). (2) 

In the experiment, [000, 440] two-beam diffraction 
also takes place. In the formalism of Penning & 
Polder (1968) used above, the dispersion equation 
corresponding to [000, 440] diffraction is 

BilBz2 - B 2 = 0 (1') 

and, for the ratio of the amplitudes, 

r 2  = - -  B/B22. (2') 

The solution of the dispersion equation is hidden 
in the coefficients B, via the vector A - ( - x(O), - z), 
where 0 is the departure of the angle of incidence 
from 60 ° (the value of the Bragg angle corresponding 
to the wavelength Am = 1~kin). 

Concerning the coefficients Bii (i = 1, 2, 3), we 
have, in practice, three possibilities for their expres- 
sion. (a) They can all be expressed in the linear 
approximation if no extremely asymmetrical diffrac- 
tion is assumed (see e.g. Bedyfiska, 1973). (b) They 
can all be expressed in the 'circular' approximation. 
(c) Two of them (corresponding to not extremely 
asymmetrical diffraction) are expressed as in (a) and 
the third one (corresponding to extremely asymmet- 
rical diffraction) is expressed as in (b). In connection 
with the choice of the approximation, the polynomial 
in variables x and z in the dispersion equation [the 
left side of (1)] is of degree (a) three, (b) six or (c) 
four. The wavefield inside the diffracting crystal is 
then assumed to be composed of the corresponding 
number of waves and, also, the boundary conditions 
must be set in the corresponding way. 

In the linear approximation, B, can be expressed 
as 

B;, = B•- 2(u;-A)/k, 

where B~ = Bo + 28k/k and 8k = k - k m  (Bo =- ~o). 
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In the 'circular' approximation, B, are expressed 
as (e.g. Chang, 1984) 

B, = Bo - (K 2 - k2)/k 2, 

where Ki = kmui + A. 
Case (b) solves the problem of the [000, 440, 404] 

diffraction, no matter which of the beams 000, 440 or 
404 is the extremely asymmetrical one. For instance, 
the case y -  - 6 0  ° corresponds to the grazing inci- 
dence beam or y - 60 ° to the extremely asymmetrical 
440 beam. In the experiment y - 0, i.e. the 404 beam 
was the extremely asymmetrical one and, because 
this paper is devoted to comparison of the calcula- 
tion with experiment, in the present paper we con- 
sider only treatment (c) with y -  0. 

The explicit expressions for the dispersion equa- 
tion (1) - equations (1 a), (1 b) and (1 c) corresponding 
to cases (a), (b) and (c), respectively - are given in the 
Appendix. 

In all subsequent calculations, the absorption of 
radiation in the crystals was taken into account as 
usual through the complex values of the coefficients 
B0 and B. 

We consider the sample crystal to be semi-infinite. 
In a semi-infinite crystal, only some of the solutions 
zJ(O) of the dispersion equation (1) contribute to the 
wavefield inside the crystal. In the coordinate system 
introduced as shown in Fig. 1, these are z j with 
Im(z:) < 0. In case (c), there are two roots of the 
dispersion equation (lc) that satisfy this condition. 

In the following boundary equations, the sub- 
scripts 1, 2 and 3 relate to the beams 000, 440 and 
404, respectively. The superscripts correspond on the 
left side of the equations to the two roots of the 
dispersion equation (lc) zj ( j  = l, 2) and on the right 
side to the incident and reflected beams. There are 
two possibilities for the beam 404: 

(i) in the dispersion construction corresponding to 
the given wavelength a, there is no intersection of the 
surface normal appropriate to the given angle of 
incidence with the vacuum 404 reflection circle, i.e. 
the beam 404 in the vacuum above the surface 
doesn't exist; or 

(ii) there are two such intersections and we choose 
the one that corresponds to the vacuum wave vector 
k3 directed to the outside of the crystal. 

We set the boundary equations as follows: 
(i) 

zl+z =z' 
2 2 = z r 2  r~Z', + r2Z, 

I 1 2 2 
r 3 Z  1 + r 3 Z  I = O, 

(ii) 

z l  + z = z '  

1 I 2 2 z r 2  r 2 Z i  + r2Zl = 

2 2 = z r 3  r l Z l  + r 3 Z  l 

2 2 , - 7 2  K l r l Z l  + K3r3z ,  I = K3 z r 3 ,  

i where the rj are calculated via (1) and (2), x[ = 
(Kg'v) ,  K3 = (k3"v). The reflection coefficient R is as 
usual considered to be the quantity 

Rj = b:lZ'Jl2/IZil 2, (3) 

where b~ is the factor of asymmetry of the beam j. In 
the case considered, b2 = b44o- 1 and b3 = b4o4 = 
- K3/[k sin (60 + 9' + O)]. 

Pacherov~i & Bubfikovfi (1987) took the boundary 
conditions to be 

ZI Z ~, I l = Z ' 2 ,  I l = Z ' 3  = r 2 Z  I r 3 Z l  

and, consequently, for y = 0, b2 = 1 and b3 = 0, 

R2-- b2lr~l 2-- Ir~l 2, R3 = 0. (4) 

Relation (4) for R2 is valid also in the case of the 
not extremely asymmetrical two-beam 440 reflection, 
with r I calculated via (1 ') and (2'). 

3. The convolution of the double-crystal rocking curve 

In the ideally adjusted double-crystal spectrometer 
(DCS), the plane of incidence is common to all 
participating diffractions of both crystals. The mea- 
surement of the rocking curve involves the rotation 
of the sample crystal, which is in the coplanar three- 
beam diffraction position, with respect to the axis 
perpendicular to the plane of incidence. 

In the DCS, the whole 'spectral window' 
- ( A O , A A )  contributes to the detected intensity at the 
same time. This fact is taken into account by the 
convolution procedure. All the contributions affect- 
ing the character of the spectral window and the 
convolution procedure were described in detail by 
Drahokoupil & Fingerland (1982). Let the definite 
mutual position of both crystals be characterized by 
the angle ft. Then, the rotation is described by the 
quantity Aft. In the simplest form, when only the 
basic characteristics of the spectral window are taken 
into account, the convolution I(Afl) calculated in the 
plane of incidence only can be expressed as 

l (d f l )=  f f l (A)gI(o ,A)gn(  - O -  Aft, A)d0da, (5) 
A 0  

where I(a) is the intensity of the spectral line. The 
superscripts I and II represent the first and second 
crystals of the DCS, respectively. If the vertical 
divergence ~0 E ( -  ~b, + &) is taken into account, then 

l (Af l )= f f f l(a)R~(O - a(~o), A) 
A O~o 

× R n ( -  O -  Aft + a(~o), a)d~odOdA, (6) 

where a(~0)=0.5~o2tan0n (for the symmetrical 
reflection, OB is the Bragg angle). 
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4. Results and discussion 

We present the results of the calculation (3) for the 
special case y=0.  In Figs. 2 and 3, the values of 
RE(O,A) a r e  illustrated with the help of contour lines. 
These correspond to the following values of the 
reflection coefficient: 0.025, 0.05, 0. l, 0.2 . . . .  ,0.9. 

It was found that R 3 is not identically equal to 
zero as (4) suggest but, in practice, it is nonzero only 
in the very sharp band along the narrow branches in 
the (O,A) plane of the illustration of RE(0,A).  In the 
same bands there are negligible differences in the 
values of RE(0,A) calculated according to (3) or (4). 

Describing the symmetrical two-beam diffraction 
[000, 440], the same representation of the reflection 
coefficient would be composed of the parallel lines 
going from the bottom left comer to the upper right 
one (these lines are the asymptotes of the corre- 
sponding lines shown in Figs. 2 and 3). 

- 

- - ~ 0 1 '  ' ' I T ' '  ' ' 1 ' '  ' ' '  ' ' ' ' I T ' I  . . . . . .  I ' ' , , ' I ' ' I ' 

- 2 0  - 1 0  0 10 20 

angle of inc idence 

Fig. 2. The reflection coefficient of  the 440 tr symmetrical reflec- 
tion corresponding to coplanar three-beam [000, 440, 404] dif- 
fraction in a silicon crystal in contour-line form. The area 
illustrated is 8 ~ ( - 20", + 20"), )t ~ (A,, - 10fm, A,, + 10fm). 

5H 

°I 
- 5 -  

- 1 0  
- 2 0  - 10 0 10 

t i n g l e  o f  i n c i d e n c e  

Fig. 3. The same as for Fig. 2 for 17" polarization. 

/ 

- ~ . ,  , : 

2 O  

In Fig. 4, the comparison of the calculated [(5)] 
and the experimental anomalies of the (Si 440 sym., 
+ Si 4403 sym.)/Ni ga2 rocking curve is shown. The 
value 100% corresponds to the same rocking curve 
with both crystals adjusted to the two-beam dif- 
fraction. 

For several points, the more precise calculation 
[(6)] was performed for the value of ~b = 0.5 °, which 
leads to the value a(~b) -- 20" 

The agreement of the calculated and experimental 
curves is quite good in this more precise calculation. 
We can therefore conclude that the adjustment of the 
sample crystal in the experiment published by 
Pacherov~, & Bubfikovfi. (1987) in the coplanar three- 
beam [000, 440, 404] diffraction was accurate and 
that the anomaly obtained shows the effect of the 
three-beam diffraction of the sample crystal in its full 
extent. Calculation with the vertical divergence 
brings only insignificant changes to the calculated 

! 

rocking curve. 
On the other hand, the agreement obtained can be 

considered to confirm that the present calculation of 
the reflection coefficient for the three-beam diffrac- 
tion studied is correct. 

The author is most grateful to Dr R. Bubfikovfi 
for her generous assistance with this work and 
encouragement to publish this article. 

APPENDIX 

The coordinate system x z  in the plane of incidence is 
introduced as usual so that axis z is parallel to the 

/f3~ (%) 

160 " Ni Ka~  

140 . q 

120 

1 O0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

80 

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I ' ' ' ' 1  . . . .  I . . . .  I ' ' ' ' 1  
- 2 0  - 1 5  - 1 0  - 5  0 5 10 15 20 25 

3 0 0 "  

Rock ing  angle  ( " )  

Fig. 4. Comparison of the calculated and the experimental anoma- 
lies arising on the [Si 440 sym., + Si 4403 sym.]/Ni Ka2 rocking 
curve when the second crystal of  the DCS is adjusted to the 
coplanar three-beam [000, 440, 404] diffraction posi t ion. . . .*  
experimental points; - -  calculated curve without vertical 
divergence; o o o o o  calculated points with vertical divergence. 
In the upper part, the whole Ni K a  2 spectral line with the 
anomaly schematically drawn is shown. 
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surface n o r m a l  v. Wi th  regard  to the o r i en ta t ion  o f  
the sample  crystal  in the exper iment  we chose the 
coord ina te  set as shown in Fig. 1. We can express the 
dispers ion equa t ion  (1) explicitly: 

C~Z 3 "Jc C~z  2 -1U C~z  -3 U Cg -" O, (1 a) 

C~ = - 2 sin 3' (3 - 4 sin 2 y), 

C~ = 3[2 cos 3' (1 - 4 sin 2 3")x - kB~], 

C~ = 6 sin y (3 - 4 sin E y)x  2, 

Cg = 2 cos 3' (1 - 4 sin 2 3')x 3 - 3kB~c 2 

+ k3(B~ 3 - 3B~B 2 + 2B3); 

C~z 6 + Cb4z 4 + C~z 3 + C~z E + Cbz + Cob=0, ( lb)  

C b= - 1, 

C4 b=  - 3 [ x 2 -  kE(1 + Bo)], 

C~ = - 2 sin 7 k3m( 3 - 4 sin 2 3'), 

C~ = 3 [ -  x 4 + 2k 2(1 + B)x 2 

+ 2k 3.,, cos 3' (1 - 4 sin 2 3')x + Cb], 

C b = 6 k  3 sin y ( 3 - 4  sin 2 3')x 2, 

Co b = - x 6 + 3k2(1 + Bo)x 4 - 2k3.,, cos 3" (1 - 4 sin 2 3")x 3 

+ 3Cbx 2 + k6[(l + Bo) 3 -  3(1 + Bo)B 2 + 2 S  3] 

- k 6  + 3 k 2 C  b, 

Cb=k2{k2(1  + B o ) -  k2[(1 + Bo) 2 -  B2]}; 

C~4z4 + C~z3 + C[zE + C~z + C ~ = 0 ,  ( lc)  

C~ = 3 - 4 sin 2 3', 

C~ = 2 sin 3' [4x cos 3t + kB~ - k,,,(3 - 4 sin 2 3')], 

C~ = 2x 2 + 2 cos 3' [3km(1 - 4 sin 2 3') - kB~]x 

- [ k E (  1 + B o ) -  kEm]( 3 - 4  s in2 3') 

- 4kkmB~ sin 2 T -  k 2(Bt~ 2 - BE), 

C~ = 2 sin y (4 cos y x 3 + [kB~ + 3kin(3 - 4 sin E y) ]x  2 

+ 4 c o s  T{kk,, ,B/)-[k2(1 + B o ) - k E ] } x - C C ) ,  

C~ = - (1 - 4 sin E y )x  4 - 2 cos 3' [kB~ 

+ k i n ( 1 - 4  sin 2 y)]x3 + {[k2(1 + B 0 ) - k  2] 

x (1 - 4 sin 2 3/) - 4kkmBO cos 2 3' 

- kE(B~ 2 - BE)}x 2 + 2 cos 3/CCx 

2 2 p2 - k k,,.(Bo - BE) + k 4{BE[2B- (1 + Bo)] 

+ B~[B~(1 + B 0 ) -  2BE]}, 

CC=k{kE[B~(1 +Bo) B E] 2 , - - k , . B o - k k , , . ( B ~  2 - BE)}. 

The coo rd ina t e  x is re la ted to the angle o f  incidence 
o f  the incident  wave  by 

x(O) =km cos (60 + y) - k cos (60 + 3, + 0). 

W h e n  the incident  b e a m  is not  the ex t remely  a sym-  
metr ica l  one, the funct ion  x(O) can be expressed as 
the l inear  one 

x( O) = - ~k cos (60 + y) + kO sin (60 + 3'). 
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Abstract 

A stochast ic  model  o f  crystal  defects is i nco rpo ra t ed  
into a F o k k e r - P l a n c k  equa t ion  descr ibing dynamica l  
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X - r a y  d i f f rac t ion  f rom imperfec t  ex tended- face  
crystals.  The  F o k k e r - P l a n c k  equa t ion  is solved by 
fo rming  a set o f  complex  m o m e n t s  descr ib ing the 
reflectance f luc tua t ions  in the crystal .  This  leads to 
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